An iterated logarithm type theorem for the largest coefficient in continued fractions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duke’s Theorem and Continued Fractions

For uniformly chosen random α ∈ [0, 1], it is known the probability the nth digit of the continued-fraction expansion, [α]n converges to the Gauss-Kuzmin distribution P([α]n = k) ≈ log2(1 + 1/k(k + 2)) as n → ∞. In this paper, we show the continued fraction digits of √ d, which are eventually periodic, also converge to the Gauss-Kuzmin distribution as d → ∞ with bounded class number, h(d). The ...

متن کامل

On multidimensional generalization of the Lagrange theorem on continued fractions ∗

We prove a multidimensional analogue of the classical Lagrange theorem on continued fractions. As a multidimensional generalization of continued fractions we use Klein polyhedra.

متن کامل

CMFT-MS 15094 The parabola theorem on continued fractions

Using geometric methods borrowed from the theory of Kleinian groups, we interpret the parabola theorem on continued fractions in terms of sequences of Möbius transformations. This geometric approach allows us to relate the Stern–Stolz series, which features in the parabola theorem, to the dynamics of certain sequences of Möbius transformations acting on three-dimensional hyperbolic space. We al...

متن کامل

Renewal-type Limit Theorem for Continued Fractions with Even Partial Quotients

We prove the existence of the limiting distribution for the sequence of denominators generated by continued fraction expansions with even partial quotients, which were introduced by F. Schweiger [14] [15] and studied also by C. Kraaikamp and A. Lopes [10]. Our main result is proven following the strategy used by Ya. Sinai and C. Ulcigrai [18] in their proof of a similar renewal-type theorem for...

متن کامل

Iterated logarithm approximations to the distribution of the largest prime divisor

The paper is concerned with estimating the number of integers smaller than x whose largest prime divisor is smaller than y, denoted ψ(x, y). Much of the related literature is concerned with approximating ψ(x, y) by Dickman’s function ρ(u), where u = lnx/ ln y. A typical such result is that ψ(x, y) = xρ(u)(1 + o(1)) (1) in a certain domain of the parameters x and y. In this paper a different typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1974

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-25-4-359-364